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Abstract: Longitudinal and transverse 15N NMR relaxation times in human ubiquitin have been measured at 600-
MHz 1H frequency with a reproducibility of better than 1%. Two independent measurements of the 15N-[1H) 
NOE indicate a random error of ca. 0.01, and no values were larger than the theoretical maximum. The relaxation 
data are incompatible with isotropic rotational diffusion but agree well with an axially symmetric rotational diffusion 
tensor with a diffusion anisotropy, ZVDJ., of 1.17. There is no statistically significant further improvement in the 
fit between the experimental data and those predicted by a fully asymmetric diffusion tensor, confirming that the 
rotational diffusion tensor of ubiquitin is axially symmetric within experimental uncertainty. The relative ratio of 
the principal components of the inertia tensor calculated from the X-ray structure is 1.00:0.90:0.64, and the axis with 
the smallest inertia component makes an angle of 11 ° with the unique axis of the experimentally determined diffusion 
tensor. Hydrodynamic calculations agree well with experimental results, provided half a shell of bound water is 
included and flexibility of the C-terminal residues is accounted for either by omitting them from the calculations or 
by using conformations for these residues obtained from a Langevin dynamics simulation. 

The introduction of sensitive indirect detection methods for 
measuring 15N and 13C NMR relaxation times in proteins1-6 

has stimulated numerous studies of the rotational diffusion of 
proteins and the internal dynamics of the backbone. Results 
are commonly interpreted in terms of a model-free approach7 

or as values of the spectral density function at various 
frequencies.8-1' In the model-free approach for macromolecules 
with isotropic overall reorientation, relaxation data are described 
by a correlation function, C(t), of the dipolar interaction vector 
(15N-1H or 13C-1H) given by 

C(t) = [S2 + (1 - S2)e~'/re]e~'/r< (1) 

where S2 is the generalized overall order parameter, rc is the 
time constant for the isotropic overall motion, and re is the time 
constant for the internal motion. When more precise and 
extensive relaxation data on individual 15N backbone atoms in 
proteins became available, Clore et al.12 noted that for certain 
residues in a protein, particularly in loop regions, a third time 
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constant, rs, was needed to describe the data: 

C(O = [S2 + (1 - Sf
2)e"'/Tf + (S{

2 - S2)e~"Ts]e'"Tc (2) 

where Tf and TS are the time constants for the fast (<~0.2 ns) 
and slow (>~0.2 ns) internal motions and Sf2 is related to the 
amplitude of the fast internal motion. For Tf <K rc, eq 2 is 
formally equivalent to an approximate equation proposed by 
Lipari and Szabo7 for the case of anisotropic overall reorientation 
with only fast internal motion. It is therefore not surprising 
that for anisotropic rotational diffusion and no slow internal 
motions, eq 2 generally provides a significantly better fit to the 
experimental data than eq 1, and great care should be taken not 
to misinterpret overall motional anisotropy as evidence for slow 
internal motions.13 

The present paper focuses on human ubiquitin, a small and 
well-characterized protein of 76 residues, with a relative ratio 
of 1.00:0.90:0.64 for the principal components of its inertia 
tensor, calculated from the X-ray structure.14 It is demonstrated 
that the relatively small degree of overall motional anisotropy 
can be determined unambiguously from 15N relaxation measure­
ments. The diffusion tensor is found to be axially symmetric 
within the experimental uncertainty, and this result agrees well 
with hydrodynamic calculations which, in addition, indicate very 
low axial asymmetry in the diffusion tensor. Relaxation data 
are incompatible with isotropic rotational diffusion of the 
protein. 

Experimental Section 

Relaxation measurements were performed at 600-MHz 1H frequency 
on a sample of commercially obtained (U-15N)-ubiquitin (VLI Research, 
Southeastern, PA), 1.4 mM, pH 4.7, 10 mM NaCl, 27 0C. Tx and T2 
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measurements were carried out using previously described methods,1516 

modified with pulsed field gradients to avoid the need for H2O 
presaturation. The T\ data were obtained using 15N relaxation delays 
of 8, 64, 136, 232, 336, 472, 664, and 800 ms (total measuring time 8 
h). The Ti data were obtained using 15N relaxation delays of 8, 24, 
48, 72, 96, 120, 160, and 192 ms (total measuring time 8 h). The 
matrix size of the acquired 2D data was 150* x 768* with acquisition 
times of 96 (U) and 83 ms (ti), using 16 scans per complex u increment. 
Two sets of T] and Ti measurements were carried out, several months 
apart. 

For the 15N-J1H) NOE measurement, two 2D spectra were acquired 
in an interleaved manner, using the water-flip-back NOE method.17 

The two acquired matrices were 140* x 768* each, and 32 scans per 
complex t\ value were used for each of the two data sets (total 
measuring time 9 h). A small correction was applied to the raw NOE 
data in order to compensate for the incomplete 'HN magnetization 
recovery during the 3.3-s repetition delay, using an average value of 
1.15 s for the non-selective 'HN T\ value. All experiments were carried 
out with the 1H carrier positioned on H2O frequency and 15N carrier at 
116.5 ppm. The spectral widths used were 15.4 ppm for 1H and 26 
ppm for 15N. Resonance assignments are taken from Wang et al.18 

All data sets were processed using 45°-shifted squared sine-bell 
apodization in both dimensions (truncated at sin2(171°) at the end of 
the window) and zero filling, to yield a digital resolution of 2.3 (Fi) 
and 3.1 Hz (Fi). Data were processed using the program nmrPipe19a 

and analyzed with the program PIPP.19b Resonance intensities were 
used in calculating relaxation times and NOE values. Errors in the T] 
and Ti values were estimated from the pairwise root-mean-square (rms) 
difference between two separate sets of measurements, taken several 
months apart. 

Theory 

For the general case of rigid body anisotropic reorientation, the 
correlation function, C0(O. of the 15N-1H dipolar interaction vector is 
given by20 

C0(O = A^-"X] + A2e"'/I2 + A3e'"z' + A4e'"u + A5e",/r5 (3) 

with Ai = 6m2n2, A2 = 6Pn2, A3 = 6/W, A4 = d - e, A5 = d + e, 
where d = [3(/4 + m4 + n4) - l]/2, e = [dx(il

A + 6mV - 1) + 
<5v(3m4 + 6/V - 1) + <5c(3n4 + 6ftn2 - l)]/6, and <5, = (D, - D)I(D2 

— L2)"2. D is defined as V3 the trace of the diffusion tensor, D = 
1Ii(Dx + Dy + D:), and L? = 1Ij(DxD, + DxD1 + DyDz). The 
corresponding time constants are defined as follows, Ti = (4Dx + D, 
+ ZX)-1, Ti = (4DV + Dx + Z).)-', r3 = (4DC + Dx + D1)-\ T4 = [6(D 
+ (D2 - I.2)"2)]"1, and r5 = [6(D - (D2 - L2)"2)]"1. In the above 
expressions /, m, and n are the direction cosines of the NH vector with 
respect to the diffusion axes, x, y, and z, respectively. 

In the special case of axially symmetric diffusion (Dx — D, = Di; 
D; = Dy), eq 3 simplifies to 

C0(O = AV"*1 ' + A'2e~'/r'2 + A'3e_'/r'3 (4) 

with A'< = (1.5 cos2 a - 0.5)2, A'2 = 3 sin2 a cos2 a, A'3 = 0.75 sin4 

a, where a is the angle between the N-H bond vector and the cylinder 
axis, and the time constants are r1] = (6Dj.)-1, x'i — (Dn + 5Di)-1, 
and x'i = (4Dn + 2Di)-1. The effect of fast internal motions, occurring 
on a time scale, re (re « (6D)-1), on the correlation function can be 
approximated by:7 
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C(O = C0(O[S2 + (1 - S2)e-'/T<] (5) 

The spectral density function, J(u>), determines the 15N relaxation 
times, T] and Ti, and the 15N-{'H} NOE. It is equal to the Fourier 
transform of the correlation function (eq 5), and for the general case 
of anisotropic rotational diffusion and re «(6D) -1, J(a>) is approximated 
by 

J(Q)) = S2 £ ^*[VO + <»V)] + (1 - S2)[r/(1 + O)V)] (6) 
k=\ 5 

where r'] =6D + re
_1 is used to ensure compatibility with the model-

free spectral density functions applicable to the isotropic case.16 For 
axially symmetric diffusion, the summation in eq 6 extends over only 
three terms, with coefficients A'j, A'i, and A'3, having the simplified 
geometric dependence on the orientation of the N-H bond vector as 
in eq 4. 

Results 

The T\, T2, and NOE values are presented in the supporting 
information, each measurement was performed twice, several 
months apart, and the pairwise average rms difference between 
the measurements was 0.9% (T]) and 1.2% (Ti), indicating 
random errors of 0.5% (T]) and 0.6% (Ti) in the averaged values. 
The pairwise rmsd between the two sets of NOE measurements 
was 0.02, indicating a random error of 0.01 in the averaged 
values. The 15N T], T2 and 1 5 N-( 1 H) NOE values are related 
to the spectral density function via well-established equations 
(see, for example, ref 5). The ,5N T]IT2 ratio is, to a good 
approximation, independent of rapid internal motions and of 
the magnitude of the chemical shift anisotropy. It therefore 
provides a good measure for the rate at which each N - H vector 
reorients with global tumbling.5 Residues with large-amplitude 
internal motions on a time scale longer than a few hundred 
picoseconds, which can be identified on the basis of a lower 
NOE value, must be excluded in such an analysis. A total of 
72 residues in ubiquitin yield observable 1 H- 1 5 N correlations, 
of which two overlap (GIn31 and Arg72) and two are very weak 
(GIu24 and GIy53). Nine residues are excluded due to NOEs 
lower than 0.65 (Leu8-Lys", GIn62, and Leu73-Gly76). In 
addition, residues are identified as subject to conformational 
exchange if the following condition applies: 

((T2) ~ T2J(T2) - ((T1) - T1J(T1) > 1.5 x SD (7) 

where T2,„ is the T2 value of residue n, and (T2) is the average 
T2 value. SD is the standard deviation of ((T2) — T2<n)l(T2) — 
((T]) - T],n)/(T]), which equals 0.052 for the 59 remaining 
residues. Use of expression 7 identifies four residues (GIu18, 
He23, Asn25, and He36) as having a significant conformational 
exchange contribution to the transverse relaxation rate. Thus, 
relaxation values from a total of 55 residues were used to 
determine the rotational diffusion parameters of ubiquitin. 

Diffusion Anisotropy from NMR Data. Without loss of 
generality, we may assume that for the diagonalized anisotropic 
diffusion tensor the z component of the diagonalized diffusion 
tensor, D1, is larger than the x and y components. When 
searching for the orientation and magnitude of the diffusion 
tensor, there are six independent variables: (1,2) the orientation 
of Dz which is a function of 0 and <f> (spherical polar 
coordinates); (3) the orientations of Dx (chosen to correspond 
to the second largest principal component) and thereby Dy which 
are defined by a third angle, ip; and (4, 5, 6) the magnitudes of 
the principal components of the diffusion tensor, Dx, Dy, and 
Dz. Conceptually the simplest way to find the values of the 
three angles and the three tensor components that agree best 
with the measured data is to conduct a systematic six-
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Table 1. Experimenlal and Calculated Diffusion Parameters for 
Human Ubiquitin" 

WIR 

hydrodyn 
calc'' 

model 

isotropic 
ax symm 
asymm 

V 
11' 
III' 

rccrr." 
Il S 

4.09 
4.12 
4.11 
4.52 
3.87 
4.08 

2DJ 
(Dx + Dv) 

1 
1.17 
I. K. 
1.42 
1.18 
1.24 

DJD, 

I 
1 
1.03^ 
1.03 
1.(14 
1.04 

0,c 

deg 

-in 
40 
45 
46 
49 

* • ' 

deg 

46 
47 
46 
50 
44 

1>. 
deg 

-\ld 

- 3 6 
- 3 7 
- 2 2 

EIN 

4.03 
2.27 
2.19 

" At 27 °C. in water, for 55 residues selected as described in the 
text. * Tceir is calculated from (6Dr ' • ' Cylindrical coordinate orientation 
of the unique axis of the axially symmetric diffusion tensor in the frame 
of the original X-ray coordinate file.14 '' Not statistically significant. 
' Using a bead model and half a shell of bound water. ' Based on the 
X-ray coordinates of residues 1 —76.s Based on the X-ray coordinates 
of residues 1-73. with residues 74—76 clipped off. * Average for 8 
hydrodynamic calculations in which the conformation of the six 
C-terminal residues is obtained from a 2-ns Langevin dynamics 
simulation. 

dimensional grid search for the values which minimize the 
difference, E, between the observed ("obs") and predicted 
("pred") T{IT2 ratios:21 

£=£[(r,ob77y,b5)2-(7l 
pre J \irp preck2 )2]/A2 181 

where A is the estimated error in the measured T1ITi ratio, and 
the summation extends over all residues, n, not subject to the 
above-mentioned large-amplitude internal motions or those that 
have an exchange contribution to T2. To minimize the time 
needed for this six-dimensional search, the angles 8, <p. and ip 
were adjusted in a preliminary search in relatively course steps 
of 15°; for increased efficiency, Dx. Dx, and D: were transformed 
to orthogonal variables, D = (D, + Dy + D1)Il, 2DJ(Dx + Dy), 
and DxIDy. A good initial estimate for (6D)" ' was obtained in 
the standard manner from the measured T1IT2 ratios by minimiz­
ing the error function, E, of eq 8,2' using a simple one-
dimensional search and the assumption of isotropic diffusion. 
The same minimum found with the time-consuming grid search 
is obtained much faster by a simple six-dimensional Powell 
optimization procedure, independent of the starting values used, 
but the grid search confirms the validity of using this latter 
procedure. 

The final column of Table 1 lists for the various motional 
models the value of the normalized error function, EIN, where 
N is the number of residues. Clearly, the fit for the fully 
asymmetric diffusion tensor yields values which are very similar 
to those obtained when fitting the NMR data to an axially 
symmetric diffusion tensor and, as will be discussed below, the 
difference in the error function between these two is not 
statistically significant. However, the fit to the axially sym­
metric diffusion tensor is considerably better than the fit to the 
isotropic diffusion tensor and is statistically significant (vide 
infra). Figure 1 shows, for the axially symmetric model, a well-
defined minimum at 8 «= 40° and d> = 46°, when EIN is plotted 
versus 8 and 4>. with rc,eff and D\JDi set to their optimum values. 
Figure 2A plots EIN as a function of DJD^ (with 8 and <j> 
constrained to their optimum values) and indicates a clear 
minimum for DJD1, =s 1.17. The quality of the fit upon 
generalizing from the axially symmetric (DJDy = 1) to the fully 
asymmetric diffusion tensor is demonstrated in Figure 2B. As 
will be discussed below, the small improvement obtained when 
DxIDy reaches 1.03 is not statistically significant. 

Statistical Significance. Because the fit between a model 
and experimental data generally improves with the number of 

(21)Dellwo. M. J.: Wand. A. J. ./. Am. Chem. Sm: 1989. / / / . 4571-
4578. 

E/N 

Figure 1. Value of the normalized error function, EIN, as a function 
of the orientation of the unique axis of the diffusion tensor. Cylindrical 
coordinates are used, where (9 = 0° corresponds to the z axis, and 6 = 
90°, <f> = 0° to the x axis of the X-ray coordinate frame, and the values 
of DII/DJ. and (2Dn + 4Di)"' are kept fixed at their optimum values of 
1.17 and 4.12 ns, determined from a four-dimensional grid search. The 
value of EIN for the isotropic diffusion model is 4.03. 

1.10 

Figure 2. EIN as a function of motional anisotropy. (Al The axially 
symmetric model, with the orientation of the unique axis constrained 
at (04) = (40°,46°), and (6D)"1 =4 .12 ns. showing a best fit to the 
experimental data for Di/D± = 1.17. (B) The fully asymmetric diffusion 
model, with the orientation of the c axis constrained at (0.0) = (40°, 
47°), (6D)-' = 4 . 1 1 ns, and 2DJ(D, + D1.) = 1.16. As discussed in 
the text, the small improvement in the fit observed when DJD, = 1.03 
is not statistically significant (i.e.. it is caused by an increase in the 
number of variables used in the fitting function relative to the axially 
symmetric model. DJD, = 1). 

adjustable parameters in the model function, one needs to 
evaluate whether the decrease in the error function obtained with 
an increase in the number of parameters is statistically signifi­
cant. To this end, we have employed the statistical F test.22 

The so-called reduced error function is defined, E,, = EI(N — 
m), where A' is the number of independently measured variables 
(here assumed to be equal to the number of residues), and m is 
the number of variables used in the fitting procedure. If two 
fitting procedures with m and m + x variable parameters are 
performed, then the ratio of their reduced E will follow an F 

(22) Bevington. P. R.: Robinson. D. K. Data Reduction and Error 
Analysis for the Physical Sciences, 2nd ed.; McGraw-Hill. Inc.: New York, 
1992; pp 205-209. 
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Table 2. Best Fits of Axially Symmetric Diffusion Tensors to 
Experimental and Randomly Assigned Data 

X-rayc 

Y 
II 
III 
IV 

0" 

40 
-29 

27 
50 
78 

4>° 
47 
84 

-52 
-17 

-116 

WAL 

1.17 
1.08 
1.07 
1.06 
1.03 

Tc 

4.12 
4.10 
4.08 
4.09 
4.07 

EIN 

2.27 
3.76 
3.74 
3.89 
3.93 

Fx 

48.9 
4.77 
5.14 
2.82 
2.20 

P(F„3,5l)b 

6.1 x 10H4 

0.010 
0.007 
0.090 
0.187 

" Cylindrical coordinate orientation of the unique axis of the axially 
symmetric diffusion tensor in the frame of the original X-ray 
coordinates. ' Calculated probability that the improved fit of the 
asymmetric model over the axially symmetric model occurs by chance 
(see text). c N-H bond vector orientations are taken from the X-ray 
structure. d I—IV represent random assignments of X-ray N-H bond 
orientations to 15N-1H correlations. 

distribution. In particular, a test for the validity of adding x 
additional terms can be carried out by calculating the following 
ratio: 

Fx = [E{m) - E(m + x)]/Ev (9) 

where E(m) is the result of fitting the data using (Af — m) degrees 
of freedom, E(m + x) is the result of using (N — m — x) degrees 
of freedom, and Ev is its corresponding reduced %2, EI(N — m 
— x). A large Fx value justifies the inclusion of the additional 
terms in the fit. A more convenient measure is the normalized 
integral of the probability density distribution, P(FxjcJ<l—m— 
x), which represents the probability that the observed improve­
ment in the (m + ;c)-parameter fit over the m-parameter fit is 
obtained by chance.22 Typically, P values smaller than 0.01 
are considered statistically significant. 

Use of the above test to evaluate the statistical significance 
of adding three degrees of freedom in the axially symmetric 
model relative to the isotropic tumbling model results in Fx = 
48.9 and P(48.9,3,51) = 6.1 x 1O-14. In order to evaluate the 
validity of the F test for studying data that may be correlated 
with one another (for example, the N - H vectors in the Glu24— 
GIu34 a-helix are nearly parallel to one another), a second test 
was also carried out: each measured Ti/72 ratio was randomly 
assigned to one of the 55 residues, thereby removing the 
correlation between the orientation of the N - H bond vector 
and the measured T\/T2 ratio. Using the axially symmetric 
model to fit these data (Table 2) nevertheless results in a fit 
which is considerably better than the isotropic model, but with 
quite small values for D|/Dj_. This result indicates that caution 
must be exercised when interpreting the results of standard 
statistical test procedures applied to data sets which contain 
N - H vectors which are not uniformly distributed over a sphere. 
Nevertheless, the more than 11 orders of magnitude difference 
in P for the randomized data set over the original one excludes 
the possibility that the observed axial asymmetry is not real. 

The principal remaining question is the significance of the 
small improvement observed in EIN when the diffusion tensor 
is no longer constrained to be axially symmetric (cf. Figure 2B). 
The probability that the slight improvement in EIN (2.19 vs 2.27) 
occurs by chance is P(1.88,2,49) = 0.31. Analogous to the 
procedure used for generating Table 2, a second and independent 
way to evaluate the statistical significance of the improvement 
in the fit of the fully asymmetric model is also used: in a frame 
where the z' axis is parallel to the unique axis of the axially 
symmetric diffusion tensor, a random fraction of 360° is added 
to the angle describing the orientation of each N - H bond vector 
in the x'—y' plane. Thus, there can no longer be a statistically 
significant deviation from DxIDy = 1. The results of best fitting 
the asymmetric diffusion tensor to four data sets, artificially 
corrupted in this manner, are shown in Table 3. The small 

Table 3. Best Fits of Anisotropic Diffusion Tensors to 
Experimental and Artificially Perturbed Data 

4> rp rc Dx +Dy DJDy EIN Fx F(F,,2,49)C 

X-ray" 40 46 -17 4.11 1.16 
I* 36 55 33 4.11 1.16 
IP 41 52 -41 4.11 1.16 
III* 38 53 -4 4.11 1.16 

1.03 2.193 1.88 0.31 
1.01 2.153 2.94 0.12 
1.03 2.169 2.51 0.17 
1.03 2.205 1.57 0.41 

IV* 36 47 41 4.11 1.16 1.03 2.234 0.84 0.82 

" N-H bond vector orientations are taken from the X-ray structure. 
b A random angle was added to the orientation of each NH bond vector 
in the plane perpendicular to the unique axis of the axially symmetric 
diffusion tensor (0, <j> = 40°, 46°). c Calculated probability that the 
improved fit of the asymmetric model over the axially symmetric model 
is statistically not significant (see text). 

improvement observed in EIN ratios and the corresponding 
P(F*,2,49) probabilities are comparable to those observed for 
the experimental data, clearly indicating that within the error 
of the experimental data, the rotational diffusion tensor is 
adequately described by an axially symmetric diffusion tensor. 

Hydrodynamic Modeling. In the X-ray structure, the 
C-terminal tail of ubiquitin extends away from the center of 
the protein and does not make any intramolecular contacts. The 
relaxation measurements clearly indicate a dramatic increase 
in internal dynamics for these residues relative to the remainder 
of the protein, and residues 74—76 all exhibit NOE values lower 
than 0.03 and Ti values longer than double the average. A 3-ns 
molecular dynamics simulation of the partially hydrated protein 
also has demonstrated the flexibility of this carboxy-terminal 
tail.23 For purposes of hydrodynamic modeling, a rigid carboxy-
terminal tail, extending away from the center of the protein, 
has a dominant effect on the rotational diffusion of the protein, 
and the experimentally observed flexibility needs to be ac­
counted for prior to hydrodynamic calculations. Two ap­
proaches have been tested in the present study. First, the three 
C-terminal residues were simply clipped off prior to hydrody­
namic modeling. In a second approach, commonly used in the 
study of polymer dynamics,24 the rotational diffusion tensor was 
assumed to be the average of a number (eight in the present 
study) of diffusion tensors, calculated for the rigid core and 
eight representative conformations of the C-terminal tail. These 
representative conformations were generated by carrying out a 
2-ns Langevin dynamics simulation on residues 71—76, with 
all other residues constrained to their X-ray positions, and saving 
coordinate sets at 250-ps intervals. The simulation was carried 
out using the program CHARMM,25 with a collision frequency 
of 1 ps - 1 to accelerate sampling.26 PARM22 potential energy 
parameters27 were used, with a distance dependent dielectric 
constant to model the electrostatic interactions in the absence 
of solvent. Within the first 250 ps the C-terminal residues folded 
back toward the remainder of the protein from their initial, 
highly extended state, and continued to isomerize throughout 
the simulation. The X-ray and clipped structures and 8 
dynamics coordinate sets from 250-ps intervals were then 
hydrated by placing the protein in a sufficiently large box of 
water and energy minimizing. Each of the eight Langevin 

(23) Braatz, J. A.; Paulsen, M. D.; Ornstein, R. L. J. Biomol. Struct. 
Dyn. 1992, 9, 935-949. 

(24) Hagerman, P. J.; Zimm, B. H. Biopolymers 1981, 27, 1481-1502. 
(25) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; Swaminathan, S.; 

Karplus, M. /. Comput. Chem. 1983, 4, 187-217. 
(26) Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Biopolymers 1992, 

32, 523-535. 
(27) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., 

Jr.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph, D.; Kuchnir, 
L.; Kuczera, K.; Lau, F. T. K.; Mattos, C; Michnick, S.; Ngo, T.; Nguyen, 
D. T.; Prodhom, B.; Roux, B.; Schlenkrich, M.; Smith, J. C; Stote, R.; 
Straub, J.; Wiorkiewicz-Kuczera, J.; Karplus, M. FASEB J. 1992, 6, A143. 
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dynamics "snapshot" structures, the X-ray structure, and the 
clipped X-ray structure were hydrated at three different levels 
by including all water oxygens within the following three 
distances of the protein: 3.5 A (161 waters on average, or 
approximately 0.4 of a full hydration shell); 3.7 A (202 waters, 
or 0.5 shell); 4.0 A (260 waters, or 0.6 shell). Hydrodynamic 
calculations were then carried out using the bead method,28 with 
protein heavy atoms and water oxygen atoms assigned radii a, 
of 1.0 and 1.6 A, respectively, and friction constants £ = Amqa, 
where t] is the viscosity.29 

As shown in Table 1, the dynamic and clipped structures yield 
anisotropics very similar to experimental values, while anisotro­
pics calculated for the complete X-ray structure are significantly 
larger. The effect of the level of hydration on the results of 
the hydrodynamic calculations is presented in the supporting 
information, Table 2. Rotational correlation times are best 
reproduced when the structures are hydrated with half a shell 
of water. This finding agrees with earlier results29 based on 
matching calculated and experimental translational diffusion 
constants, D1. The neglect of bound water on estimating 
rotational relaxation times is more serious than for translation: 
including only the heavy atoms of the X-ray structure in the 
hydrodynamic calculation, for example, yields TC = 2.4 ns, and 
D1 = 1.57 x 1O-6 cm2/s. All of the solvated structures yield 
translational diffusion constants of ca. 1.3 x 1O-6 cm2/s (scaled 
to 20 0C in water), whereas the relative changes in rc are far 
larger. 

As expected, the eigenvectors associated with the diffusion 
tensor are not directly aligned with those of the moment of 
inertia tensor. Hydrodynamic calculations predict a slightly 
smaller difference for the angle between the symmetry axis of 
diffusion and the axis with the smallest moment of inertia than 
what is determined from the experimental data. The orientation 
of the unique axis obtained from hydrodynamics agrees to within 
9° with experiment, for both the "clipped" protein and the 
models generated with Langevin dynamics. 

Discussion and Conclusions 

The NMR relaxation data demonstrate that the rotational 
diffusion of human ubiquitin is clearly anisotropic, as expected 
based on its inertia tensor: relative ratios of the principal 
components of the inertia tensor, calculated from the X-ray 
coordinates,14 are 1.0:0.90:0.64, and after removing the three 
highly mobile (NOE <0.03) C-terminal residues, 1.0:0.91:0.71. 
The unique axis of the experimentally determined diffusion 
tensor makes an angle of 11° with the eigenvector corresponding 
to the lowest eigenvalue of the moment of inertia tensor. 
Statistical testing indicates that the probability that the experi­
mentally observed diffusion anisotropy is caused by random 
error in the data is smaller than 1O-6. There is no experimental 
evidence, however, for a deviation from axially symmetric 
rotational diffusion, although such a deviation would have been 
expected to be unambiguously observable if the DxIDy ratio 
exceeds a value of ca. 1.06. 

The NMR-derived rotational diffusion tensor is found to be 
in very good agreement with results from hydrodynamic 
calculations, provided that half a shell of bound water is 
included, and the flexibility of the C-terminal residues is taken 
into account (Table 1). Although the absolute values of the 

(28) Garcia de la Torre, J.; Bloomfield, V. A. Q. Rev. Biophys. 1981, 
14, 81-139. 

(29) Venable, R. M.; Pastor, R. W. Biopolymers 1988, 27, 1001-1014. 

calculated diffusion tensor components vary considerably with 
hydration level, their relative ratios and the orientation of the 
principal axes are rather insensitive to this parameter. Without 
accounting for the flexibility of the C-terminal residues, 
hydrodynamic calculations predict a high degree of anisotropy 
(£>i/Di = 1.42), whereas clipping the last three residues reduces 
Pi/Dx to 1.18. If the conformation of the C-terminal residues 
is taken from snapshots of a 2-ns Langevin dynamics simulation 
on residues 71—76, with all other atoms constrained to their 
X-ray positions, the predicted value of D|/D± (1.24) falls 
somewhat above the experimental value, but the rotational 
correlation time agrees nearly perfectly with experiment. 

Although ubiquitin exhibits clearly measurable anisotropy in 
its rotational diffusion, the values calculated for S2 and Te from 
T\, Ti and NOE are remarkably similar to those obtained when 
assuming isotropic diffusion (supporting information, Table 1), 
provided the same group of residues is used in the analysis. 
The pairwise rmsd between the values calculated for S2 and re 

in the anisotropic and the isotropic case is 0.005 and 1.4 ps, 
respectively. However, if anisotropy is not recognized, residues 
with a shorter than average Ti may be misidentified as being 
subject to conformational exchange. Their elimination would 
shift the obtained rc value, and thereby the S2 values. Residues 
with a larger-than-average TilT\ ratio could be wrongly identi­
fied as being subject to nanosecond internal motions. 

Very recently, Briischweiler et al.30 reported motional ani­
sotropy for a three-domain zinc finger. In their analysis, an 
effective correlation time was derived for each N-H vector from 
the NMR data, using an isotropic model assumption. These 
correlation times were then fit to an anisotropic diffusion tensor. 
In the present case, the relaxation data are fit directly to the 
spectral densities appropriate for anisotropic diffusion. Despite 
the modest rotational diffusion anisotropy of ubiquitin relative 
to the three-domain zinc finger, the magnitude and orientation 
of the experimental diffusion tensor can be determined ac­
curately and is in very good agreement with predictions based 
on hydrodynamics. Study of the rotational diffusion anisotropy 
from NMR data requires that the conformation of the macro-
molecule be included in the analysis. If not, anisotropic 
diffusion remains difficult to identify.3132 
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